બે રાશિના મૂલ્યો સાધનથી ચોકચાઈ પૂર્વક માપતા $A = 2.5\,m{s^{ - 1}} \pm 0.5\,m{s^{ - 1}}$, $B = 0.10\,s \pm 0.01\,s$ મળે છે. તો $AB$ નું માપન કેટલું થાય?
$\left( {0.25 \pm 0.08} \right)\,m$
$\left( {0.25 \pm 0.5} \right)\,m$
$\left( {0.25 \pm 0.05} \right)\,m$
$\left( {0.25 \pm 0.135} \right)\,m$
સાંકડીપટ્ટીની લંબાઈ, પહોળાઈ અને જાડાઈ અનુક્રમે $(10.0 \pm 0.1)\,cm$, $(1.00 \pm 0.01)$ અને $(0.100 \pm 0.001)$ છે. કદમાં સૌથી વધુ સંભવિત ત્રુટિ કેટલી હશે ?
કોઇ એક પદાર્થના વેગના માપનમાં આવતી ઘન ત્રુટિ $50\%$ હોય તો તેની ગતિઊર્જાના માપનમાં કેટલા ................ $\%$ ત્રુટિ આવે?
લઘુતમ માપ કોને કહે છે ? લઘુતમ માપ ત્રુટિ એટલે શું ?
કોઈ ભૌતિક રાશિ $P$ ને $P= \frac{{{A^3}{B^{\frac{1}{2}}}}}{{{C^{ - 4}}{D^{\frac{3}{2}}}}} $ સૂત્ર વડે રજૂ કરવામાં આવે તો, $P$ માં કોના દ્વારા મહત્તમ ત્રુટિ ઉમેરાશે?
રાષ્ટ્રીય પ્રયોગશાળામાં આવેલી પ્રમાણભૂત ઘડિયાળ સાથે બે ઘડિયાળોનું પરીક્ષણ કરવામાં આવે છે. પ્રમાણભૂત ઘડિયાળ જ્યારે બપોરના $12:00$ નો સમય દર્શાવે છે ત્યારે આ બે ઘડિયાળના સમય નીચે મુજબ મળે છે :
ઘડિયાળ $1$ | ઘડિયાળ $2$ | |
સોમવાર | $12:00:05$ | $10:15:06$ |
મંગળવાર | $12:01:15$ | $10:14:59$ |
બુધવાર | $11:59:08$ | $10:15:18$ |
ગુરુવાર | $12:01:50$ | $10:15:07$ |
શુક્રવાર | $11:59:15$ | $10:14:53$ |
શનિવાર | $12:01:30$ | $10:15:24$ |
રવિવાર | $12:01:19$ | $10:15:11$ |
જો તમે કોઈ પ્રયોગ કરી રહ્યાં હોય જેના માટે તમને ચોકસાઈ સાથે સમય અંતરાલ દર્શાવતી ઘડિયાળની આવશ્યકતા છે, તો આ બે પૈકી કઈ ઘડિયાળ લેવાનું મુનાસિબ માનશો ? શા માટે ?